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Abstract- iWARP is a state of the art high-speed connection-

based RDMA networking technology for Ethernet networks to 

provide InfiniBand-like zero-copy and one-sided 

communication capabilities over Ethernet.  Despite the benefits 

offered by iWARP, many datacenter and web-based 

applications, such as stock-market trading and media-

streaming applications, that rely on datagram-based semantics 

(mostly through UDP/IP) cannot take advantage of it because 

the iWARP standard is only defined over reliable, connection-

oriented transports.  This paper presents an RDMA model that 

functions over reliable and unreliable datagrams.  The ability 

to use datagrams significantly expands the application space 

serviced by iWARP and can bring the scalability advantages of 

a connectionless transport to iWARP.  In our previous work, 

we had developed an iWARP datagram solution using 

send/receive semantics showing excellent memory scalability 

and performance benefits over the current TCP-based iWARP. 

In this paper, we demonstrate an improved iWARP design that 

provides true RDMA semantics over datagrams. 

Specifically, because traditional RDMA semantics do not 

map well to unreliable communication, we propose RDMA 

Write-Record, the first and the only method capable of 

supporting RDMA Write over both unreliable and reliable 

datagrams. We demonstrate through a proof-of-concept 

software implementation that datagram-iWARP is feasible for 

real-world applications.  Our proposed RDMA Write-Record 

method has been designed with data loss in mind and can 

provide superior performance under conditions of packet loss.  

It is shown through micro-benchmarks that by using RDMA 

capable datagram-iWARP a maximum of 256% increase in 

large message bandwidth and a maximum of 24.4% 

improvement in small message latency can be achieved over 

traditional iWARP.  For application results we focus on 

streaming applications, showing a 24% improvement in 

memory usage and up to a 74% improvement in performance, 

although the proposed approach is also applicable to the HPC 

domain.  

Keywords - iWARP; RDMA; �etworking; Datagrams; High 

performance networks 

I. INTRODUCTION 

Ethernet is the undisputed technology of choice for 
modern commercial data centers.  Unfortunately, many of 
the technical enhancements in use in the high performance 
networking area have not been incorporated into Ethernet.  

Efforts have been made utilizing Transmission Control 
Protocol over IP (TCP/IP) offloading schemes such as 
stateless offloads (checksumming, segmentation etc.) and 
stateful TCP offload engines, with stateless offloading being 
implemented more frequently than stateful offloading in 
commercial devices.  iWARP (Internet Wide Area RDMA 
Protocol) [23] was proposed to offer Remote Direct Memory 
Access (RDMA) functionality over Ethernet.  This allowed 
for significantly lower latencies and reduced CPU utilization 
by offering kernel bypass, zero-copy based communications, 
and non-interrupt based asynchronous communication [1].   

Despite the benefits offered by iWARP, many datacenter 
and web-based applications, such as stock-market trading 
and media-streaming applications, that rely on datagram-
based semantics (mostly through the User Datagram 
Protocol over IP (UDP/IP)) cannot take advantage of it 
because the iWARP standard is only defined over reliable, 
connection-oriented transports.  Moreover, currently one-
sided RDMA operations (such as RDMA Write) are only 
defined on reliable and connected transports.  This 
effectively limits the number of applications that could 
utilize iWARP and its RDMA capabilities by excluding 
UDP, which according to [2] could comprise more than 90% 
of all Internet consumer traffic by 2014.   

Connection-based iWARP has a number of limitations 
that make it inappropriate for large-scale systems.  First, the 
scalability of the current iWARP is limited since the 
hardware needs to keep data for each and every connection 
in hardware or host memory.  This limits its effectiveness for 
applications that are required to service a very large number 
of clients at a single time.  In addition, the current iWARP 
standard suffers from numerous overheads associated with 
connection-based transports such as TCP and Stream Control 
Transmission Protocol (SCTP) [17].  High overhead 
reliability and flow-control measures in TCP and SCTP 
protocols impose the burden of unnecessary communication 
processing on applications running on low error-rate 
networks (such as High Performance Computing (HPC) and 
data center clusters) as well as applications which do not 
require reliability.   

Moreover, the complexities and overhead associated with 
packet marking, which is required to adapt the message-
oriented iWARP stack over the stream-oriented TCP 
protocol, further reduce the overall message rate that can be 
achieved with the current TCP-based iWARP standard. 



In [22], we proposed send/recv datagram support for 
iWARP for use in high-performance computing 
environments, with corresponding reliability mechanisms.  It 
has been demonstrated that in such HPC applications, 
datagram-iWARP can provide significant memory savings of 
over 30% and runtime improvements of up to 40% on 
moderately sized HPC clusters, while providing higher 
bandwidth than connection-based iWARP.  This paper 
extends the work in [22] by proposing the first RDMA 
operation over unreliable datagrams that can significantly 
increase iWARP performance and scalability and expand the 
application space that iWARP can serve to include some 
very network intensive applications.  

In order to support RDMA over unreliable datagrams, in 
this paper we demonstrate RDMA Write-Record, a proposal 
for the design and implementation of, what is to our 
knowledge, the first RDMA design over an unreliable 
datagram transport.  It is designed to be extremely 
lightweight and to be used in an environment in which 
packet loss occurs.  This allows for its use in situations 
where data loss can be tolerated, but can be supplemented by 
a reliability mechanism (like reliable UDP) for those 
applications that cannot deal with data loss.  RDMA Write-
Record is particularly useful in the circumstances that a 
server is sending a large chunk of data to a client.  In the 
situation where the client does not need a guarantee that all 
of the message will arrive entirely intact, such as streaming 
audio or online gaming, where missing data can be skipped 
over with little noticeable degradation, this can be of great 
use.  We believe that the proposed design for RDMA Write-
Record is not limited to iWARP and can be utilized in any 
other RDMA-enabled network such as InfiniBand [12]. 

Applications in both HPC and data center domains can 
significantly benefit from the RDMA capable datagram-
iWARP.  VOIP and streaming media applications are 
typically built on top of protocols like Real-time Transport 
Protocol (RTP), which can utilize UDP as a lower layer.  
The large overhead that processing such huge amounts of 
data creates can be overcome by using a hardware RDMA 
solution that offloads the intensive data shuffling activities 
from the CPU and performs them directly to/from memory.  
By using RDMA capable datagram-iWARP we can 
significantly reduce the CPU load of commercial systems 
delivering high bandwidth media, allowing for lower overall 
system cost due to much lower CPU requirements while 
providing the required performance to utilize 10-gigabit 
Ethernet hardware.  In addition, because we do not need to 
keep connection data for each client, a datagram based 
solution is much more scalable than traditional iWARP. 

A major factor blocking the widespread adoption of 
datagram-iWARP could be the application interface.  For 
traditional iWARP this has been solved by the adoption of 
the Sockets Direct Protocol (SDP) [20].  iWARP utilizes a 
set of verbs for communication that are not immediately 
compatible with the traditional socket interface.  The task of 
re-writing applications to make use of iWARP verbs is a 
large and intensive one.  Therefore SDP was designed to 
translate sockets based applications to use the verbs 
interface.  SDP does not provide any support for datagram-

based applications, only those using TCP, as it closely 
replicates the behaviour of a stream socket, not a datagram 
socket.  Therefore, we have designed a socket interface to 
allow applications to harness the speed and features of 
datagram-iWARP without having to re-write any software.  
This interface is a proof of concept to show that datagram-
iWARP can be adapted to use such important interfaces.  In 
addition to its functionality over sockets, datagram-iWARP 
is also applicable within an HPC context using verbs.  We 
will concentrate on sockets-based application in this paper. 

Through our verbs level tests, we find that RDMA Write-
Record over datagrams has a maximum bandwidth 
improvement of over 256% compared to Reliable 
Connection (RC) RDMA Write.  We also see over a 24% 
improvement in small message latency using UD RDMA 
Write-Record over RC RDMA Write.  Application results 
using our socket interface show a 24.1% memory usage 
improvement for a SIP server application and performance 
improvements for SIP applications (43.1%) and media 
streaming (VLC) applications (74.1%). 

This paper is organized as follows.  In Section II, we 
discuss the current iWARP standard.  Section III reviews 
related scholarly work.  Section IV, details the changes 
required to iWARP to include datagram functionality, as 
well as details about how we can provide one-sided RDMA 
operations over datagrams.  Section V discusses the design 
of our software implementation.  Section VI details the 
experimental platform and our evaluation results.  Section 
VII provides our conclusions and discusses future work. 

II. IWARP BACKGROUND 

Proposed by the RDMA Consortium [23] in 2002 to the 
IETF [13], iWARP is a specification that uses a user level 
stack over either TCP or SCTP protocols over Ethernet.  It 
uses an interface referred to as verbs in order to interact with 
the stack [10].  These verbs are different in semantics than a 
traditional socket interface as iWARP was designed as an 
alternative to the operating system networking stack.  Figure 
1 shows the iWARP stack next to the traditional OS TCP/IP 
stack for comparison, and illustrates how the iWARP stack 
can completely bypass the kernel’s networking stack.   

Kernel bypass has several advantages, it can prevent 
extra copies of the data being made during processing (zero 
copy) and it completely offloads the processing overhead 
onto the Network Interface Card (NIC) hardware away from 
the CPU.  In order to successfully offload this task, the NIC 
needs to have both stateless and stateful offloading 
capabilities.  This allows it to perform all of the tasks 
normally done in the OS networking stack in hardware. 

The iWARP stack consists of three unique fundamental 
layers underneath the verbs interface, the Remote Direct 
Memory Access Protocol (RDMAP) layer, the Direct Data 
Placement (DDP) layer and the Marker PDU Alignment 
(MPA) layer, as shown in Figure 1.  A NIC that implements 
these layers on top of TOE is called and RDMA-enabled $IC 
or RNIC. 

The RDMAP layer [24] is responsible for providing the 
basic communication primitives, namely the send, receive, 
RDMA write and RDMA read functions.  It directly uses the  



 

Figure 1.  iWARP standard stack compared to host-based TCP/IP 

DDP layer to accomplish this and is a relatively lightweight 
layer.  All requests to the RDMAP layer from the verbs 
interface are delivered in order to the DDP layer. 

The DDP layer [25] allows for data to be directly fetched 
from or written to memory without any intermediary copies.  
For the untagged model (send/recv), it places incoming data 
by matching the incoming packet’s header to an existing 
sink.  The receiver side handles all of the buffer management 
and determines where incoming data will be placed.  The 
communication between both sender and target utilizes 
queues at each side, and is referred to as a Queue Pair (QP).  
In the tagged model (RDMA Write/Read), the header 
contains a steering tag (STag) that indicates the memory 
location where the data should be placed.  This STag is 
known by the sender of the data via a previous advertisement 
of the available buffers on the receiving node.  Data to be 
written or read from advertised buffers are accompanied by 
an offset value and a length, in order to be properly placed.  
The receiving machine enforces the requirement that the 
requested memory location must be registered with the 
device as a valid memory region before placing the data.   

The MPA layer is responsible for placing markers in the 
outgoing messages and removing them from incoming 
messages [4].  These markers point to the appropriate header 
for a given message.  This is required in a stream-based 
protocol as the messages can be segmented by intermediate 
devices, which requires that there be some way to determine 
what message an incoming packet belongs to.  Such 
functionality is not needed for datagrams as they have 
defined message boundaries and are not segmented by 
intermediary devices.  This allows message-based protocols 
to avoid this costly activity of inserting and removing 
markers from packets. 

III. RELATED WORK 

Evaluations of 10 Gigabit Ethernet NICs offload engines 
[7], and a comparison of the high-speed networks discussed 
in [21] have been previously performed.  The 

implementation of the current iWARP standard in software, 
originated from a project by OSC [18] that provides both 
user-space [5] and kernel space [6] implementations.  The 
user-space part of this implementation is the code-base for 
implementing datagram-iWARP.  The SoftRDMA project at 
IBM Zurich laboratory has finished a software iWARP 
solution [14] to be integrated into Open Fabrics Enterprise 
Distribution stack [19].   

Beside the iWARP solution, there have been other 
approaches with the goal of improving Ethernet efficiency.  
The Open-MX project is an open-source implementation of 
Myrinet Express over Ethernet (MXoE) [9].  Local Area 
Network (LAN) RDMA technology such as MXoE [16] and 
InfiniBand [12] over Ethernet (IBoE) have shown the 
effectiveness of RDMA over LANs.  IBoE, also called 
RDMA over Ethernet (RDMAoE) is designed to take 
advantage of InfiniBand’s RDMA stack by replacing 
InfiniBand’s link layer with Ethernet [27].  This technology 
encapsulates InfiniBand reliable and unreliable services 
(only send/recv is defined over unreliable datagrams) inside 
Ethernet frames.   

A new set of standards referred to as Converged 
Enhanced Ethernet (CEE) has opened up issues revolving 
around providing advanced features over Ethernet networks.  
Some industry vendors and researchers [3] are also 
proposing to include RDMA functionality over CEE 
(RDMAoCEE). 

Our work in [22] introduced send/recv datagram-iWARP 
in an HPC context over Message Passing Interface (MPI) 
[15].  We have defined a send/recv iWARP datagram 
solution that works over both unreliable and reliable 
datagram transports.  We analyzed the performance of such a 
scheme within a high-performance computing context using 
an MPI interface.  We found that the datagram based iWARP 
solution increased bandwidth by up to 20% and decreased 
latency by up to 16% while providing a 30% improvement in 
application memory usage and a 40% reduction in runtime 
for scientific applications.  This work expands on that 
previous work by introducing RDMA Write-Record and our 
sockets interface, as well as studying the performance of 
datagram-iWARP in a data center context and under 
conditions of packet loss. 

IV. DATAGRAM-IWARP 

Datagram-iWARP expands on the iWARP standard, to 
add support for UDP alongside TCP and SCTP.  There are 
several applications in which UDP is preferable over TCP or 
SCTP.  This section will discuss the benefits of datagram-
iWARP as well as the design of datagram-iWARP for both 
tagged (one-sided) and untagged (send/recv) operations. 

A. Motivation 

Datagram iWARP brings the advantages of high-speed 
networking technology to applications that are currently 
bound by the limitations of traditional Ethernet.  One of the 
most important advantages is the increased performance that 
using datagrams provides.  The high overhead reliability and 
flow control methods used in TCP [11] are not present in 
UDP, which allows it to function with reduced latency and 
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increased throughput.  TCP and SCTP both guarantee in-
order delivery of data.  Therefore, in the case of packet loss, 
there can be a significant delay in delivering data that have 
already arrived but is blocked by an incomplete message at 
the head of the receive queue, causing network jitter.  The 
goal of using UDP as opposed to SCTP or TCP is to provide 
a very low overhead lightweight solution that provides a 
transport to applications capable of handling an unreliable 
transport, such as applications that handle large amounts of 
time sensitive data, like online gaming.  In this application, 
there is little benefit to taking advantage of reliability or in-
order delivery, as the data are only valid for very short 
periods.  In addition, such applications are very 
computationally intensive so offloading communication is 
very desirable. 

In addition, because datagram-iWARP has defined 
message boundaries via the datagrams, it avoids the 
requirement of having to mark packets to determine message 
boundaries.  Packet marking which is used to correct the 
semantic mismatch between message-based iWARP and 
stream-based TCP, is a high overhead activity and is very 
expensive to implement in hardware [1].  Therefore, 
avoiding it in datagram-based UDP is a significant advantage 
over TCP.  SCTP also has defined message boundaries, but it 
provides even more features than those in TCP and 
consequently is more complicated.  SCTP is also not as 
mature as either TCP or UDP, and as such is still in the 
process of being tuned for performance on various platforms. 

 The other shortcoming of connection-based transports is 
that they limit resource sharing among different connections.  
Therefore, resource usage such as memory consumption will 
exponentially increase as the scale of the system increases.  
Although methods such as shared receive queues (SRQ) 
slow down the connections’ memory usage trend to some 
extent, such methods are still not as scalable as true 
datagrams.   

A datagram-based iWARP avoids many complexities 
associated with connections.  It avoids the overhead of MPA 
layer and complicated reliability measures in TCP and 
SCTP.  It also requires a smaller memory footprint than the 
current connection based standard over TCP or SCTP, since 
it does not have to keep information regarding connections 
[22].  When utilizing OS bypass, such memory savings are 
important, as state information needs to be held in memory 
on the RNIC, or be accessed on the system through memory 
accesses.  In addition, by offloading such tasks onto a NIC, 
and using RDMA, we can leverage a common method of 
significantly reducing the CPU requirements for maintaining 
high bandwidth data streams while bringing this technology 
into existing data centers that provide services that take 
advantage of UDP.  This allows for businesses to concentrate 
their investment directly into networking technologies and 
capacity instead of the CPU hardware required to support 
such large bandwidth or low latency requirements, a 
common benefit of Wide Area Network (WAN) capable 
RNICS. 

The lowered complexity of datagram-iWARP means that 
if fabricated as a stand-alone solution, it can be fabricated at 
much lower cost than traditional iWARP.  Alternatively, it 

also provides an inexpensive addition to existing iWARP 
silicon.  With the increase in datagram based Internet traffic 
[2], it is important to improve the performance, and reduce 
the server side overhead of such traffic using the existing 
infrastructure.  At the consumer level, Voice over IP (VOIP) 
applications, on-demand video, rich streaming media 
content, high quality Internet radio, and low-latency multi-
player online gaming are all applications that can benefit 
from using an RDMA enabled datagram-based Ethernet.  
Broadcast and multicast support are also attractive features 
of using datagrams.  In particular, a multicast capable 
iWARP solution would be useful in providing high 
bandwidth media while leveraging the other benefits of 
datagram-iWARP. 

B. Design 

Datagram iWARP represents a significant shift in the 
overall design of iWARP, as the current standard is based 
entirely upon reliable connection-based transports that 
provide ordered delivery.  All of these requirements are not 
supported with UDP, and although a reliable UDP 
implementation can provide some of the required features, it 
still does not match the existing standard.  It is important that 
a design be compatible with both unreliable and reliable 
datagram transports, as applications that currently use UDP 
as a transport are capable of handling data loss, like media 
streaming, VOIP applications or streaming data such as 
financial market feeds.    While data loss is not desired, it is 
not a fatal error in such applications, and therefore the 
required overhead for reliability may be avoided in some 
circumstances.  In addition, some socket-based applications 
for commercial data centers must already assume an 
unordered transport, as they make use of UDP.  However, 
applications that currently use TCP can also be supported via 
a reliable UDP implementation that provides the order and 
reliability guarantees they require.  In the case of one-sided 
RDMA operations like RDMA Write, the order of the data is 
not important unless the same memory location is being 
written to multiple times with no control messages, a 
condition that is highly not recommended in the existing 
standard.   

A high level overview of some of the required added 
support for datagram-iWARP can be seen in Figure 2.  It 
should be noted that datagram-iWARP does not require the 
MPA [4] layer.  This is due to the fact that datagram packets 
are never segmented by intermediate routers, and therefore 
no middle-box fragmentation problem exists with datagrams, 
as it does with stream-based protocols.  This avoids the 
costly exercise of inserting markers into the data payload and 
consequently will help to enhance performance, as fewer 
operations on the data are required before placing it out on 
the transmission line.  These changes are compatible with 
both unreliable and reliable lower UDP layers. 

Our datagram-iWARP solution is mostly compatible with 
the existing iWARP standard.  However, several layers, both 
DDP and RDMAP are defined as requiring that the lower 
layers be reliable.  Therefore specific standards requirements 
must be relaxed in order to facilitate datagram iWARP, in 
addition to other changes required to support datagrams that 



are not explicitly contrary to the defined standard.  Such 
changes are: 

1.  In the DDP standard [25], Section 5, item 3, requires 
that the Lower Layer Protocol (LLP) must reliably deliver all 
packets.  This requirement must be relaxed for unreliable 
datagram-iWARP.   

2.  The DDP standard [25], Section 5 item 8, states that if 
an error happens on an LLP stream, the stream must be 
marked as erroneous and no further traffic can travel over it.  
This requirement is also loosened in datagram-iWARP, as 
we don’t invalidate LLP streams (or QPs) when errors occur 
due to data loss, they are simply reported, but the QP is not 
forced into the error state for unreliable service.  In the case 
of a reliable LLP, the error should be reported, but the 
connection teardown is not required, as no such connection 
exists, the QP simply transitions into the error state.   

3.  The RDMAP Standard [24] Section 5.1 states that the 
LLPs must provide reliable in-order delivery of messages.  
This cannot be provided for in datagram-iWARP, but should 
be handled by applications as current UDP applications or 
Upper Layer Protocols (ULPs) currently do.  For a Reliable 
Datagram (RD) solution, this is not required as an RD LLP 
should provide order and reliability guarantees. 

4.  Datagram iWARP requires either the establishment of 
new verbs, or the adaptation of existing verbs for methods of 
creating and manipulating datagram iWARP sockets.  We 
require a datagram type QP, as well as a method for 
initializing datagram QPs.  In addition, we require verbs that 
allow for the inclusion of destination addresses and ports 
when posting a send request.  We also require a datagram 
receive verb that allows for the sender’s address and port to 
be reported back to the calling application.  This is 
accomplished by expanding the work request elements to 
include the source address of an incoming message.  In 
addition the completion queue elements need to be altered to 
include information concerning the source address and port 
for incoming data.  These changes are required throughout 
the stack to support datagrams. 

 

 
Figure 2.  Changes for datagram-iWARP 

5.  Datagram-iWARP does not require packet marking 
for either UD or RD modes, therefore the MPA layer [4] can 
be removed. 

6.  Operating Conditions:  Datagram-iWARP always 
requires the use of Cyclic Redundancy Check (CRC32) 
when sending messages.  In addition, there is no initial set up 
of operating conditions exchanged when the QP is created; 
the operation conditions are set locally, and should be 
communicated through the ULPs.  Given that we are using 
an unreliable transport, using messages spanning multiple 
datagrams makes the system vulnerable to packet loss.  
While useful in conditions of low network congestion, it can 
cause significant problems based on the existing standard.  
With datagram-iWARP it is recommended that the 
application layer perform segmentation and assembly for 
messages larger than the defined maximum UDP packet size, 
64KB.  Although for UD RDMA operations it is possible to 
perform reassembly of larger messages in the iWARP stack. 

 

1) Send/Recv over Datagrams - The design for send/recv 

operations is discussed in detail in [22].  It is capable of 

using many of the existing designs in the iWARP stack.  The  
iWARP stack needs to be altered such that it can handle a 
connection-less based traffic flow, and that it can report the 
source of incoming traffic back to the calling application.  
To support this several new verbs have been added, such as 
datagram versions of the send and receive posting request 
verbs, although such verbs could be integrated with the 
existing verbs.  Our implementation was also adapted to 
allow for opening iWARP sockets that use datagrams.  
These changes are in line with those detailed in Section 
IV.B. 

Datagram-iWARP matches incoming packets at the DDP 
layer with the appropriate receive WR.  It does not guarantee 
that the order in which the incoming packets are completed is 
the order in which the send side actually transmitted the data.  
As such, the applications must be able to handle out of order 
data, or a reliable UDP implementation must be used that is 
capable of ensuring in order delivery.  In order to prevent 
polling on operations that will never complete (in the event 
that incoming data are lost and no more incoming data are 
expected) it is essential that the completion queue be polled 
with a defined timeout period.  This allows for the failure to 
receive a given packet.   

The send/recv verb semantics match those used for 
sockets very well.  As such, send/recv functionality is 
integrated into our iWARP socket interface discussed in 
Section V.A. 

 
2) RDMA Write over Datagrams - There is currently no 

method proposed that allows for RDMA operations over 
unreliable datagrams.  The one-sided RDMA write operation 
requires a significant change in design due to the unreliable, 
out-of-order nature of the transport.  The defined RDMA 
Write operation requires the lower layer provide in-order 
delivery.  For datagram-iWARP, using a reliability scheme 
at the lower layers cannot be assumed, so we can be assured 
of neither reception nor in-order guarantees.  Therefore, we 
need an operation that can determine the validity of data on 
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the target side without a supporting operation generate at the 
source side. 

Currently, RDMA Write over reliable connections can 
notify the target application of when data is valid by 
completing a send/recv operation after the successful RDMA 
Write [24].  This has the purpose of informing the 
application that there is valid data to read.  Alternatively, 
some implementations also use a flagged bit in memory that 
is polled upon, and when set, the operation is known to be 
complete.  Over an unreliable transport this does not work 
for several reasons.  Firstly, the RDMA write may not 
complete successfully, and the send/recv operation does, 
which causes the target to receive invalid data (as the source 
considers the write operation complete when all data have 
been passed to the LLP).  Alternatively, the RDMA 
operation may complete but the send/recv is lost.  Using 
high-level acknowledgments is not an ideal solution to these 
problems as such acknowledgements may also be lost and 
cause unnecessary re-transmission. 

3) RDMA Write-Record: We propose a new method 
called RDMA Write-Record for use over unreliable 
datagrams.  RDMA Write-Record must log at the target side 
what data has been written to memory and is valid.  The 
target application can then request this information to 
determine what data is valid by reading the appropriate 
completion queue entries.  These completion queue entries 
can be designed as either individual entries for each logical 
chunk of data in a message or can be a validity map; 
essentially an aggregated form of individual completion 
notifications.  For messages of a size less than or equal to the 
Maximum Transfer Unit (MTU) of the LLP, this notification 
is very simple, comprising only a single completion entry or 
single entry validity map.  This method differs from 
send/recv over UD as there is no matching receive request 
posted, the data is simply placed in the correct memory 
location.  However, unlike a traditional RC RDMA Write 
operation, no further communication is required between the 
source and target and the source completes the operation at 
the moment that the last bit of the message is passed to 
transport layer.  The differences between the two approaches 
can be seen in Figure 3. 

RDMA Write-Record is an especially useful operation 
for datagrams as it has very low latency achieved by being 
able to directly write into allocated memory with a pre-
determined data sink location.  It also fits well into the 
semantics for sockets, in that it can easily be used within a 
send/recv semantic that is compatible with socket-based 
applications.  The send side initiates a request, which 
completes as soon as the data are delivered to the UDP layer.  
In order to support a socket type interface, the receiver can 
then poll for the completion of an RDMA Write-Record 
operation.  This method is also valid for a reliable transport, 
although in practice, the solution of polling on a signalling 
bit to determine completion is a lower-overhead method of 
performing an RDMA operation.  In a reliable transport, the 
in-order and reliable delivery make the monitoring of what 
data is valid unnecessary at the iWARP level, as it is handled 
at the lower level.  

RDMA Write-Record is somewhat similar to send with 
the solicited event verbs defined for iWARP.  In send with 
solicited event, the target machine can receive a send, match 
it to a posted receive and signal an event, if the system 
supports such an operation (for example an interrupt).  This 
differs from RDMA Write-Record as it is a two-sided 
operation, and it also creates an event at the target, where 
RDMA Write-Record simply creates a completion event 
queue element, that must be actively read in order to 
determine that the operation completed.  RDMA Write-
Record also has some similarities with the RDMA Write 
with immediate verb defined for InfiniBand networks.  
RDMA Write with immediate differs from our RDMA 
Write-Record as it requires that a receive be posted at the 
target to receive the immediate data.  Our proposed solution 
does not require a posted receive whatsoever, making it a 
truly one-sided operation. 
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4) Packet Loss Design Considerations - In designing a 
networking solution operating over an unreliable transport, 
consideration must be made for packet loss, particularly if 
message sizes greater than the network MTU are supported.  
We have designed support for partial message placement 
through RDMA Write-Record.  This allows for some data 
loss, for applications that can tolerate some packet loss, such 
as streaming audio, or online gaming.  A small subset of 
applications also exists that is capable of determining if the 
incoming data feed is valid or not and compensating for 
invalid inputs.  We provide support for informing 
applications of the valid memory areas that have been 
written to, in order to support applications that can handle 
invalid input streams as well as those that can tolerate some 
data loss.  The performance benefits of this approach versus 
the whole message delivery provided by send/recv is 
illustrated in Section VI.A.   

WANs normally run using a 1500 byte MTU, with 
applications using message sizes smaller than the MTU.  
Datagrams are technically defined up to a maximum size of 
64 KB.  Therefore, it is preferable to package each message 
sent over RDMA Write-Record as a complete unit that spans 
only one datagram packet, preferably the size of the network 
MTU.  In order to enhance relatively error free local area 
network transmission performance, and make our solution 
compatible with varied network MTUs, we have designed in 
support for larger message sizes than the expected network 
or datagram MTU.  This can lead to efficiency increases for 
applications that can use large messages over low-loss 
networks.  Its use over existing WAN infrastructure, 
particularly congested networks, is limited as the penalty for 
packet loss can be high.  

Typically, in the event of packet loss while sending large 
multi-packet datagram messages, the entire message must be 
discarded.  This can be alleviated to some extent by the 
addition of a reliability mechanism for UDP, but it is 
preferable to have multiple independent requests in an 
environment with frequent packet loss.  With the proposed 
changes to Ethernet, like CEE, that defines error free 
channels; systems can make use of large message sizes to 
increase efficiency.  

V. SOFTWARE IMPLEMENTATION 

The software implementation of datagram-iWARP was 
developed using a TCP-based iWARP implementation from 
[5].  A socket interface was added, which is described in 
more detail in Section V.A. 

The software implementation replicates the functioning 
of all of the iWARP layers as a user-level library.  It 
provides a verbs interface that applications can use to 
interact with the iWARP stack.  The expanded stack is 
shown in Figure 4. The changes required to the verbs, 
RDMAP, and DDP layers as described in Section IV.B were 
implemented in this software stack.  In addition, changes 
were required to the code to allow for the use of datagram 
transports at a lower layer that would not be required in a 
hardware implementation of datagram-iWARP.  Our 
software implementation takes advantage of I/O vectors to 
minimize data copying and enhance performance.  

 

 

 
Figure 4.  The software implementation of datagram-iWARP 

In addition, it requires the use of CRC at the DDP layer to 
ensure correct reception of individual packets.  CRC checks 
may be performed at the UDP layer, and therefore it would 
be redundant to do so again at the DDP layer.  Therefore, it 
is recommended that CRC checking be disabled at the UDP 
layer to further enhance performance. 

A. iWARP Socket Interface  

The iWARP socket interface was designed to serve as a 
layer that translates the socket networking calls of 
applications over to use the verb semantics of iWARP.  This 
has the significant benefit of allowing existing applications 
to take advantage of the performance of iWARP while not 
requiring that they be re-developed to use the verbs interface.  
This interface is a proof of concept showing that it is 
possible to write a user-level interface for socket applications 
to directly use datagram-iWARP hardware.  Such 
functionality is provided for reliable connection-based 
RDMA through the Sockets Direct Protocol [20].  No such 
protocol exists for unreliable transports, although the 
concepts used in SDP could be adapted to offer functionality 
for datagram-based traffic.  Therefore, our socket interface 
should be regarded as a demonstration that such functionality 
could conceivably be implemented in a full SDP-like 
protocol specification.  In order to fairly compare the UD vs. 
RC results, support for both UD and RC operations has been 
included in our socket interface implementation. 

1) Design - Our socket interface works by dynamically 
preloading it before running an application, overriding the 
operating system networking calls to sockets, re-directing 
them to use iWARP sockets instead.  Unlike SDP, our design 
does not override the creation of sockets, only the data 
operations related to them, and does not seek to replicate 
datagram socket behaviour like SDP does for TCP.  As such, 
it uses the socket initialized by the application directly over 
the iWARP software stack.  In a hardware solution, this 
design would be expanded to override all socket creation as 
well, so that the relevant hardware QP could be created and 
associated with a “dummy” file descriptor number, and a full 
protocol specification could be developed to enable more 
efficient use of RDMA Write-Record. 
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Figure 5.  UD iWARP vs.  RC iWARP Verbs latency 

The iWARP socket interface operates by allowing for 
both TCP and UDP-based iWARP sockets to be opened, 
using the relevant iWARP lower layer protocol.  It tracks the 
socket to QP matching so that each socket is only associated 
with a single QP.  For datagram-iWARP, the work request 
posted to the QP is assigned a destination address at the time 
of a send.       

When a call is intercepted, the interface determines the 
type of socket that is performing the request, and uses either 
RC or UD as appropriate for the socket type.  Information 
about the destination address, source address or port is not 
stored in the interface, only the QP to file descriptor mapping 
and whether the file descriptor has been previously 
initialized as an iWARP socket.  The remaining required 
information is stored in the socket data structure. 

This solution is much more lightweight than traditional 
SDP, but less robust as applications can modify sockets.  As 
such it is suitable for determining the performance of 
datagram-iWARP with some popular socket-based 
applications.  However, it is not a comprehensive alteration 
of the existing SDP standard in order to adapt it specifically 
to use a datagram semantic.  Altering SDP would have the 
positive benefits of hiding the socket creation from the 
applications, and is essential for a hardware implementation 
to separate the socket based networking semantic at the 
application level from the verbs based semantics of the 
hardware itself.   

Such an addition to the SDP protocol would be lengthy 
and require major changes or additions to the existing 
standard.  Our goal with the iWARP socket interface is to 
demonstrate that a datagram socket to verbs translation is 
possible, and demonstrate the potential benefits that 
datagram-iWARP could bring to existing datagram sockets-
based applications. 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

This section details the experimental platform used for 
performance testing the datagram-iWARP implementation.  
It also reviews the performance results of verbs level 
microbenchmarks for all of the discussed modes of 

operation, and investigates the performance of two 
applications, a media streaming application VLC [28] and a 
SIP [8] application/benchmark SIPp.   

The experimental results were run on two nodes, each 
with two quad-core 2GHz AMD Opteron processors with a 
512KB L2 cache per core and 8MB shared L3 cache per 
processor chip, 8GB RAM and a NetEffect 10-Gigabit 
Ethernet (10GE) card connected through a Fujitsu 10-Gigabit 
Ethernet switch.  The OS used was Fedora Core 12 (kernel 
2.6.31). 

A. Microbenchmark Performance Results  

1) Latency and Bandwidth - The results of the verbs 

latency of datagram iWARP are shown in Figure 5, for 

send/recv, RC RDMA write and UD RDMA Write-Record.  

We can observe that the lowest latencies for small messages 

are UD send/recv and UD RDMA Write-Record, which are 

in the range of 27-28µs for messages less than 128 bytes.   
Therefore in terms of latency datagram-iWARP is 

consistently better than RC send/recv and RC RDMA Write, 
which has latency around 33µs for messages under 128 bytes 
long.  For message sizes up to 2KB, UD send/recv offers a 
18.1% improvement in latency over RC send/recv iWARP, 
while UD RDMA Write-Record offers a 24.4% 
improvement over RC RDMA write.  For messages between 
16KB to 64KB we can observe that the performance of RC 
send/recv is slightly better than that of UD RDMA Write-
Record and UD send/recv, but the UD based iWARP 
solution (send/recv and Write-Record) have better latencies 
for larger message sizes.  

Figure 6 shows the unidirectional bandwidth in which 
one side is sending back-to-back messages of the same size 
to the other side.  The performance of messages between 
1KB and 1.5KB is of great importance as such message sizes 
are the most likely to be used in the delivery of media.  For 
1KB messages UD RDMA Write-Record has a bandwidth of 
188.8% higher than RC RDMA Write and UD send/recv has 
a maximum bandwidth of 193% higher than that of RC 
send/recv. 
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Figure 6.  Unidirectional Verbs Bandwidth 

For messages larger than 1.5KB, multiple datagrams 
comprise a single message, and they are recombined at the 
receiver to form the full message.  Such a scheme is only 
useful in networks with low packet loss rates, but the results 
in such an environment are excellent.  We find that for very 
large messages, UD RDMA Write-Record is the dominant 
method.  Examining the bandwidth results for large 
messages (larger than 128KB) in Figure 6, we can observe 
that UD iWARP is the winner.  UD send/recv offers a 
maximum of 33.4% improvement over RC send/recv 
occurring at 256KB messages.  Most importantly, RDMA 
Write-Record has a significant 256% advantage at message 
sizes of 512KB over RC RDMA Write. 

2) Packet Loss and Performance - In order to study the 
proposed system under packet loss conditions, the Linux 
traffic control provisions.  Using the traffic control 
mechanisms, a FIFO queue that normally dequeues messages 
as fast as they can be delivered to the underlying hardware 
was configured to drop packets at a defined rate.  By 
examining the bandwidth of UD send/recv datagram-iWARP 
under various packet loss conditions in Figure 7, we can see 
that the theoretical evaluation done in the design stage 
follows the results seen under real conditions.  For the UD 
send/recv mode, the impact of packet loss is significant for 
large message sizes even under very low packet loss 
conditions.  A loss rate of 0.1% is close to the observed 
packet loss rates for intra-US web traffic, while a 0.5% loss 
rate is in line with expectations of loss between a western 
European-US transmission [26].  Packet loss rates of 1-5% 
are observable for traffic to such locations as Africa and 
parts of Asia.  As such we can observe that the solution of 
partial delivery of messages improves performance over the 
required full message delivery used in our send/recv method.  

Figure 8 illustrates that the partial RDMA Write-Record 
method performs better in low packet loss conditions even 
for larger message sizes.  We observe a drop at 64KB 
messages as these messages exceed the maximum sized 
MTU of the UDP layer, requiring multiple UDP messages.   
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Figure 7.  UD Send/Recv Bandwidth Under Packet Loss Conditions 

For messages under 64KB and greater than the network 
MTU of 1500 bytes, multiple packets are segmented at the 
sender and recombined at the target machine and delivered 
by the UDP layer as a single large message.  Any loss of the 
smaller packets making up this large UDP packet results in 
the entire (up to 64KB) message being dropped.  For 
messages larger than 64KB, the partial placement feature of 
RDMA Write-Record makes it capable of maintaining high 
bandwidth under packet loss conditions.  Segments (64K) are 
placed in memory as they arrive and their reception and 
location is recorded.  So for messages that comprise many 
64KB UDP segments some of the overall message can be 
saved even if some 64KB UDP segments are discarded.  
However, high packet loss rates can cause total breakdown 
of the bandwidth, as the final packet must arrive for the 
partial message to be placed into memory and those parts 
that are valid are declared as such.  Loss of this final packet 
results in the loss of the entire message.  Therefore, large 
loss rates (~5%) can lead to very low throughput for large 
sized messages.  However, the performance for more 
typically used smaller messages is excellent. 

Overall, we can observe that datagram iWARP clearly 
has great benefits in terms of bandwidth for our software 
implementation.  We would therefore expect that the 
hardware proposed by this proof of concept would have 
excellent throughput, although obviously limited in its 
maximum bandwidth by the link speed itself.  These 
performance results show that such a scheme can provide 
high bandwidth, while in hardware, requiring no CPU 
intervention.   

The effectiveness of iWARP UD RDMA Write-Record 
is clear in that it has latency comparable to the best 
alternative method (UD send/recv), and it clearly has the best 
bandwidth performance of any of the methods.  In Ethernet 
networking in a commercial environment, the bandwidth 
performance is much more important than the latency 
performance, as even moderately sized transmission ranges 
lessen the impact of the lowered latency at the system side. 
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Figure 8.  UD RDMA Write-Record Bandwidth Under Packet Loss 

Conditions 

B. Application Results 

The iWARP socket interface has been tested using a 
variety of custom coded socket tests, as well as testing using 
widely accepted socket based software.  It is designed to 
work over any application that uses a datagram or stream 
socket.  It has been tested with VideoLan’s VLC [28] a 
popular media streaming application as well as SIPp [8], a 
testing framework for load testing SIP servers.   

1) VideoLan’s VLC media player - VLC [28] was 

chosen for performance testing of datagram iWARP.  In 

order to assess datagram-iWARP’s real world performance 

benefits for a media streaming application it was necessary 

to compare VLC’s UDP streaming mode with an RC 

compatible mode (HTTP-based) for a UD vs. RC 

comparison.  In comparing the two approaches as seen in 

Figure 9, we can observe that the UD mode of operation 

results in a 74.1% reduction in media initial buffering time 

over the HTTP-based RC alternative.  This represents a 

significant increase in throughput for the system of almost 

three times the throughput of a RC based system.  However, 

it should be noted that there is more inherent overhead 

involved in the HTTP based method, and therefore the 

performance gap between the application modes is due only 

partially to the datagram-iWARP to RC-iWARP difference. 
However it can be observed that the performance difference 
between send/recv and RDMA Write-Record is minimal.  
This is due to the need in the software socket interface to 
provide support for many buffers passed into a single socket.  
In order to effectively support the use of multiple buffers on 
a single socket, we have elected not to re-exchange  
(advertise) remote buffer locations for every new buffer due 
to the required overhead and subsequently reduced 
performance, but to copy the data over to the supplied buffer 
location instead.  This makes both RDMA Write-Record and 
send/recv almost identical in terms of performance when 
using our socket interface.  Therefore in the next sub-section, 

we will present the UD results as a single performance 
number instead of separating the results out for both 
methods.  Future enhancements to performance similar to 
SDP’s buffered copy/zero copy methods will allow for a 
differentiation in real-world performance, by using zero-
copy for large message sizes and buffered copy for smaller 
messages.  This also increases memory efficiency, as 
intermediary buffers are not required for large messages, as 
they are written directly into the application buffer. 

2) SIPp Server/Client - We have examined the base 

response time for interaction with the SIPp server.  For 

request/responses under a server under light load, we found 

the request response averages seen in Figure 10.  We observe 

that the UD-iWARP response time is a 43.1% improvement 

over that of RC-iWARP.  This can be attributed to the TCP 

overhead incurred. 
Using SIPp [8] we have investigated the overall memory 

benefits of using datagram-iWARP over traditional RC 
iWARP.  A SIPp server and client were generated and 
configured as a client and server using a basic SipStone 
client-server test.  Figure 11 details the memory savings that 
are possible when using datagram-iWARP on a SIP server 
compared to RC in such a scenario.  The memory savings 
were calculated using the sum of the SIPp application 
memory usage and the allocated slab buffer space used to 
create the required sockets.  This means that the memory 
usage is a whole application space (including iWARP 
memory usage) memory usage comparison including kernel 
space memory for the sockets.  SIPp was configured to 
generate a load emulating many clients, which creates a 
single UDP port for each client.  We find that at 10000 
clients, we have a memory savings of 24.1%.  Theoretical 
calculations based solely on the iWARP socket size (using 
one socket per client) predict that such a case would result in 
a 28.1% memory improvement over RC.  The resulting 4% 
difference can be directly attributed to the application’s 
memory usage, which would require some additional book 
keeping to keep track of the states of the calls over the UDP 
ports to determine when to close the ports.  Although the 
actual amount of memory used in this test is not excessive, it 
can become more onerous on systems supporting hundreds 
of thousands to millions of clients. 

We have measured the overhead caused by using the 
datagram-iWARP socket interface when doing the most 
network intensive task available during video streaming, the 
pre-buffering required before beginning playback.  We have 
found a very minimal approximate 2% increase in overall 
pre-buffering time when using our socket interface over 
using native UDP.  As such, the interface has very low 
overhead, as the overall overhead of the software iWARP 
solution and the socket interface is only a 2% penalty over 
the native UDP networking stack, which our iWARP 
software solution uses at the lower layers.  Therefore, we can 
conclude that for such applications, the software iWARP 
solution is viable, and a hardware iWARP solution should 
therefore be able to significantly improve performance while 
having very little overhead running over a software socket 
interface. 
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Figure 9.  VLC UD Streaming vs.  RC-based HTTP Streaming 
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Figure 10.  SIP Response Times 
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Figure 11.  SIP Improvement in memory usage using datagram-iWARP 

over traditional iWARPConclusions and Future Work 

Datagram-iWARP has been shown to be effective in both 
HPC [22] and datacenter environments.  The advantages of a 
scalable connectionless transport are numerous and the 
efficiency improvements that can be realized are significant.  
As datagram traffic is expected to dominate future WAN 
traffic, the inclusion of datagram support for modern high 
performance interconnects is an important step in broadening 
the application space for RDMA-enabled network 
technologies.  This paper represents a major milestone in the 
development of RDMA technology.  It is the first proposal 
that provides RDMA over unreliable datagrams, and is 
consequently very scalable.  As unreliable datagrams 
become an ever-growing majority of Internet traffic this 
proposal provides the opportunity to expand RDMA 
technologies to a majority of applications and traffic, 
particularly high bandwidth applications that are likely to use 
datagrams.   

In this paper we have provided a design for a full 
featured datagram-iWARP solution.  We have proposed a 
new RDMA operation, RDMA Write-Record, which can be 
utilized on any RDMA-enabled network, including 
datagram-iWARP.  In addition, we have implemented and 
tested both a fully functional software datagram-iWARP 
stack as well as a socket interface for providing iWARP 
functionality to existing socket-based applications.  The 
performance of the datagram-iWARP send/recv and one-
sided RDMA operations were explored with real data center 
applications, finding that one-sided RDMA Write-Record 
can have significant performance benefits over send/recv.  It 
was found that the bandwidth of datagram-iWARP can 
exceed that of traditional iWARP by up to 256% for RDMA 
operations using large message, and that RDMA Write-
Record can outperform RC RDMA Write with up to a 24.4% 
improvement in latency.  It was also discovered that the 
overhead of the software iWARP socket interface is 
minimal.   

We have examined the bandwidth performance of 
iWARP under various packet loss scenarios and determined 
the MTUs most appropriate for given network conditions.  
We also determined that the considerations that we made for 
packet loss have had the desired effect on the overall 
bandwidth of our proposal; providing increased bandwidth 
and partial delivery for those applications that can take 
advantage of such features. 

We evaluated the performance of some real-world 
applications, which demonstrated that datagram-iWARP 
could be useful in such contexts.  It was observed that the 
real-world memory scalability and performance of datagram 
iWARP over SIP is excellent, providing a memory savings 
of 24.1% and performance improvement of 43.1%, and that 
performance over VLC can outperform RC by 74.1%.  These 
benefits will scale well with large commercial clusters.  We 
have shown that sockets-based applications can take 
advantage of datagram-iWARP, and that it would be 
beneficial to develop a protocol similar to SDP, but for 
datagrams, that will leverage the advantages of RDMA 
Write-Record for socket applications, to translate the verbs 
performance benefits of Write-Record over to the sockets 
domain. 



In the future we would like to examine the performance 
and memory scalability of our proposal on larger systems 
and with different applications.  We would like to develop a 
protocol similar in concept to SDP for datagrams based on 
our observations in this paper.  It would also be useful to 
expand the proposed concepts by utilizing a reliable 
datagram transport, to provide datagram support for a larger 
range of possible applications.  We would also like to extend 
this work by creating an interface to allow MPI to take 
advantage of the new RDMA Write-Record over datagram-
iWARP and also propose UD-based RDMA Read for use in 
HPC applications. 
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